
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Managment System for
Georeferenced Unmanned Aerial
Vehicle Sensory Data

Milan Zelenka

January 2017
Supervisor: Ing. Milan Rollo Ph.D.









/ Declaration
I do hereby declare, that I developed

the submitted thesis independently,
and I stated every piece of information
sources which I used according to the
methodical instructions about compli-
ance of ethical principles during the
development of a master’s thesis.

v



Abstrakt / Abstract
Tato práce se zabývá georeferoncová-

ním sensorických dat získaných z bez-
pilotních vzdušných prostředků. Navr-
huje řešení, jak tato data efektivně uklá-
dat a jak vyhledávat takové části těchto
dat, které obsahují objekty zájmu de-
finované svou geografickou pozicí. De-
monstruje, jakým způsobem byla data
sbírána spolu s problémy, jenž vyvstá-
valy v důsledku jejich nepřesností, uklá-
dání těchto dat v databázi, mapování
prostoru s jejich pomocí a popisuje způ-
sob, jak vzhledávat ta data, která obsa-
hují dané objekty zájmu.

Klíčová slova: bezpilotní letouny,
georeferencování, geo-prostorová data-
báze, PostgreSQL, PostGIS, mapování
geografických dat, GoPro kamera, ka-
librace kamery, odometrie

Překlad titulu: Systém pro správu
georeferencovaných senzorických dat z
bezpilotních prostředků

This work deals with georeferencing
of sensory data acquired by unmanned
aerial vehicles. It proposes a solution
of how to store these data effectively
and how to seek out parts of these data
containing objects of interest given by
their geographical position. It deals
with data acquisition and the setbacks
which arose due to their inaccuracies,
storing of these data in a database, us-
ing them to map the real environment
and describes approaches of how to seek
out their parts containing objects of
interest.

Keywords: UAS, UAV, drones, geo-
referencing, geo-spatial database, Post-
greSQL, PostGIS, geo-mapping, GoPro,
camera calibration, odometry

vi



Contents /
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 Applications of UAS . . . . . . . . . . . . .1
1.2 Motivation and goals . . . . . . . . . . . .2
1.3 Thesis structure . . . . . . . . . . . . . . . . . .2

2 Current State of the Art . . . . . . . . . .3
2.1 LiDAR sensors . . . . . . . . . . . . . . . . . . .3
2.2 Photogrammetry . . . . . . . . . . . . . . . . .4
2.3 Videos and images . . . . . . . . . . . . . . .4
2.4 Data storage . . . . . . . . . . . . . . . . . . . . .5
2.5 Spatial databases . . . . . . . . . . . . . . . .6

2.5.1 PostGIS performance . . . . . .7
2.5.2 Comparison with a

commercial solution. . . . . . . .8
3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3.1 Data acquisition - compo-

nents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.1 u-blox NEO-M8N . . . . . . . . 10
3.1.2 ArduPilot Mega 2.6 . . . . . . 11
3.1.3 GoPro HERO 4 Black . . . 12
3.1.4 Data acquisition - for-

mat . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Data mapping . . . . . . . . . . . . . . . . . . 13

3.2.1 Mapping algorithm . . . . . . 13
3.2.2 Additional filtering. . . . . . . 14

3.3 Data storing . . . . . . . . . . . . . . . . . . . . 14
4 Implementation. . . . . . . . . . . . . . . . . . . 16
4.1 Telemetry acquisition . . . . . . . . . . 17
4.2 Camera calibration . . . . . . . . . . . . 17

4.2.1 Calibration procedure . . . 18
4.2.2 Calibration results . . . . . . . 20

4.3 Odometric calculations . . . . . . . . 21
4.3.1 Feature detection . . . . . . . . 21
4.3.2 Feature matching . . . . . . . . 22
4.3.3 Essential matrix . . . . . . . . . 23

4.4 Data mapping . . . . . . . . . . . . . . . . . . 24
4.5 Mapping algorithm . . . . . . . . . . . . 25

4.5.1 Bounding polygon . . . . . . . 25
4.5.2 Limiting the distance

of view. . . . . . . . . . . . . . . . . . . . 29
4.5.3 Translation of the

bounding polygon . . . . . . . . 29
4.5.4 Additional filtering. . . . . . . 30
4.5.5 3-dimensional check. . . . . . 31

4.6 Database structure. . . . . . . . . . . . . 32
4.6.1 Additional adjustments . . 34

5 Experiments . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Visual experiment. . . . . . . . . . . . . . 35
5.1.1 Visual experiment - re-

sults . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Field of view experiment . . . . . . 37

5.2.1 Field of view experi-
ment - results . . . . . . . . . . . . 38

5.3 Sensor correctness experi-
ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.1 Sensor correctness ex-

periment - results . . . . . . . . 39
5.4 Visual experiment revisited . . . 39

5.4.1 Visual experiment re-
visited - results. . . . . . . . . . . 40

5.5 Scalability . . . . . . . . . . . . . . . . . . . . . . 41
5.5.1 Search . . . . . . . . . . . . . . . . . . . . 41
5.5.2 Insert . . . . . . . . . . . . . . . . . . . . . 42

6 Conclusion and future work . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . 46

vii



Tables / Figures
2.1. MySQL vs PostGIS - func-

tionalities . . . . . . . . . . . . . . . . . . . . . . . . .7
3.1. NEO-M8 specifications . . . . . . . . 11
3.2. GoPro FOV specifications . . . . . 12
4.1. Calibration matrix . . . . . . . . . . . . . 20
4.2. FOV of rectified a image. . . . . . . 21
4.3. Elevation error . . . . . . . . . . . . . . . . . 25
5.1. Drone parameters . . . . . . . . . . . . . . 36
5.2. FOV measurements . . . . . . . . . . . . 39
5.3. Time of search experiment. . . . . 42
5.4. Time of insert experiment . . . . . 43

1.1. Drone spraying pesticides . . . . . . . .1
2.1. Point cloud . . . . . . . . . . . . . . . . . . . . . . .4
2.2. Photogrammetry example . . . . . . .4
2.3. Filesystem and BLOBs -

fragmentation effects . . . . . . . . . . . . .5
2.4. Filesystem and BLOBs - read

throughput . . . . . . . . . . . . . . . . . . . . . . .6
2.5. MySQL vs PostGIS - contains . . .6
2.6. Bounding box visualization . . . . . .7
2.7. R-tree visualization . . . . . . . . . . . . . .8
3.1. Work flow diagram . . . . . . . . . . . . . . .9
3.2. Y6 hexacopter . . . . . . . . . . . . . . . . . . 10
3.3. Y6 hexacopter wiring . . . . . . . . . . 10
3.4. u-blox NEO-M8N . . . . . . . . . . . . . . 11
3.5. ArduPilot Mega . . . . . . . . . . . . . . . . 12
3.6. GoPro HERO 4 Black . . . . . . . . . 12
3.7. False detection . . . . . . . . . . . . . . . . . 14
3.8. Simplified database schema . . . . 15
4.1. Point of interest search flow . . . 16
4.2. Barrel distortion . . . . . . . . . . . . . . . 17
4.3. Calibration - corner extrac-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4. Distortion estimate - before . . . 19
4.5. Distortion estimate - after . . . . . 19
4.6. Reprojection error . . . . . . . . . . . . . . 20
4.7. Distorted image. . . . . . . . . . . . . . . . 21
4.8. Undistorted image. . . . . . . . . . . . . . 21
4.9. Feature detection. . . . . . . . . . . . . . . 22

4.10. Feature matching. . . . . . . . . . . . . . . 23
4.11. Coordinate system transfor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.12. Curvature of Earth error. . . . . . . 24
4.13. Rays facing down . . . . . . . . . . . . . . 26
4.14. Rays rotated. . . . . . . . . . . . . . . . . . . . 27
4.16. Convex hull - example . . . . . . . . . 28
4.17. Visible area - frustum . . . . . . . . . . 28
4.18. Visible area - bounding poly-

gon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.19. Monitored area - convex hull . . 31
4.20. 3-dimensional check . . . . . . . . . . . . 32
4.21. Database E-R diagram. . . . . . . . . 32
5.1. Comparing data - visualizer . . . 35
5.2. Compering data - video . . . . . . . . 35
5.3. Altitude error - viewed area . . . 37
5.4. Field of view calculation . . . . . . . 38
5.5. Distorted image. . . . . . . . . . . . . . . . 38

viii



5.6. Undistorted image. . . . . . . . . . . . . . 38
5.7. Final experiment 1 . . . . . . . . . . . . . 40
5.8. Final experiment 2 . . . . . . . . . . . . . 41
5.9. Time of search experiment. . . . . 42

5.10. Time of insert experiment . . . . . 43

ix





Chapter 1
Introduction

Unmanned Aerial Systems (UAS), in this work’s context also referred to as drones,
have become an attractive data acquisition platform in emerging applications. As
measuring instrument they extend the lineup of possible surveying methods in the field
of geomatics [1]. With the UAV hardware decreasing in its size and becoming more
affordable, it is now possible to mount these vehicles with advanced payload and use
them for computationally extensive tasks.

UAVs may operate at various levels of autonomy: either under remote control by a
human operator, or fully or intermittently autonomously, controlled by onboard com-
puters [2].

1.1 Applications of UAS
When used, UAS often perform missions characterized by the three Ds: dull, dirty, and
dangerous. Dull means long-endurance missions which, in the future, could continue for
several days. Dirty means jobs such as detecting chemical agents and their intensity,
which, due to different dangers, should not be interacted with directly. Dangerous
missions for unmanned vehicles are numerous and growing and can be usually found in
the context of warfare [3]. Civilian applications of use may extend from agriculture -
e.g. figure 1.1, delivery of goods, journalism, safety inspections to police surveillance;
civilian drones now vastly outnumber the military ones.

Figure 1.1. A drone sprays pesticides on a farm in Bozhou, central China’s Anhui province
[4].

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 Motivation and goals

The motivation of this work is to design and implement a process of sensory data
georeferencing and store these data in a persistent storage in such a way that allows for
effective search based on geographical coordinates - longitude, latitude and altitude.

Typical scenario would be gathering of sensoric data in form of photos or videos (e.g.
for the purposes of surveillance) along with the camera’s geographical coordinates as
well as it’s orientation in space (azimuth, roll, pitch). An operator would be controlling
a UAS with a mounted camera possibly with a gimbal and he or she would be monitoring
objects of interest in an area. Based on these data, the viewed area of these images or
videos would be calculated and stored in a persistent storage. This storage should then
allow for a search of arbitrary objects (points of interest) contained in these photos or
videos based on their geographical position. The system should then be able to seek
out all photos and videos containing such a point of interest in the entire database.

1.3 Thesis structure
The thesis is broken down into several parts and is organized as follows.

The chapter called Current State of the Art talks about the current technologies used
for similar purposes to the ones of this work and the means which can be utilized to
achieve this work’s goals.

The subsequent chapter titled Design informs the reader about the technologies,
concepts and the main ideas used to implement the final product. However, it does not
go into detail and gives the reader solely a brief overview of what is described in detail
in the next chapters.

The following chapter named Implementation describes in detail the approaches and
methods used in this work. It is organized in the following manner.

• At the beginning it describes the methods by which the raw data is acquired, its
format and the way it is processed. It talks about inaccuracies of data measurements
and possible ways of working around them.

• Afterwards, it shows a solution of how to map the acquired data to images and videos
and describes the calculations and algorithms used.

• Finally, it proposes a way of effective data storing with focus on search. It explains
why such a way is effective and the reasons why it was used.

The final chapter then describes the experiments used throughout this work along
with their results and provides reasoning why it rendered to be successful or unsuccess-
ful.

2



Chapter 2
Current State of the Art

In the recent years, due to the rapid development of sensors and information technolo-
gies in general, a lot of research has been done in the georeferencing field. Georeferenc-
ing itself means assigning geographical coordinates to some data such as in this work’s
context to sensory data. This process may be done in different ways and is reflected in
its data acquisition. Some of the ways of how to acquire the data to be georeferenced
is described in this chapter.

Also, these data need to be stored in a way which allows us to work effectively with
it. This chapter explores some of the currently used mechanisms allowing for such a
data storage.

2.1 LiDAR sensors

One of the considered acronyms of LiDAR is Light Detection And Ranging. One can
picture a LiDAR as a device for distance measuring using a laser beam. The wavelength
used varies depending on the type of objects measured. Below are listed some examples
of use.

. infrared (1500 - 2000 nm) for meteorology.near-infrared (1040 - 1060 nm) for terrestrial mapping.blue-green (500 - 600 nm) for bathymetry.ultraviolet (250 nm) for meteorology

Some of the available LiDARs can measure distances up to 1.5 kilometers and can
target many different types of materials [5]. Consequently, and due to accessibility
of drones, airborne LiDARs have become rather popular. These are able to create
three-dimensional models of environment called point clouds that represent the scanned
landscape 2.1.

3



2. Current State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. A point cloud created by a LiDAR [6].

2.2 Photogrammetry
Photogrammetry is an approach of how to map a scanned environment and can be
described by a human eye perception analogy. The photogrammetric system tries to
estimate the relationships between image and object space based on visual data using
disciplines such as optics and projective geometry. An example of a model acquired
using photogrammetry is depicted by figure 2.2. An advantage is that most common
cameras can be used for photogrammetry, however, the necessary processing time is
significantly higher than it is for LiDAR scanning and the data acquisition is also often
relatively time consuming as enough images of the object of interest have to be taken
in order for an accurate model to be created.

Figure 2.2. A model (left) created by photogrammetric methods [7].

2.3 Videos and images
Another way of how to store sensory data is in form of raw images and videos. The
advantage is they do not require any technology other than a camera but they usually
do not carry other relevant information. Therefore, for the purposes of georeferencing, it
is necessary to store other necessary information such as the camera’s GPS coordinates
separately and implement a way of mapping them to the video.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Data storage

Since the main goal of this work is to design a system which is able to seek out objects
mainly in videos and pictures based on their GPS position, this approach was chosen
as the optimal one with little overhead to its processing time.

2.4 Data storage
The data that is being dealt with in this work, as stated previously, are videos and
images as well as information about the UAS bearing a camera such as its GPS coor-
dinates and orientation as the videos or images are taken. Since the UAS’ information
can be stored as plain text and does not require too much space on the disk, it can
be stored in a relational database. The question arises whether the images and videos
should be stored in a database as BLOBs (binary large obejcts) or in a filesystem.

When deciding whether to store files in a filesystem or a database, storage frag-
mentation is the main determinant and filesystems seem to have better fragmentation
handling than databases. However, this advantage only applies for files that are larger
than 256kb and if the objects are under 256kb, the database has a clear advantage [8].
Figure 2.3 approximately depicts when a database outperforms a filesystem and vice
versa. This experiment was done using Microsoft SQL Server and the NTFS filesystem.

Out[104]=

●

●

●

■ ■

■

200 400 600 800 1000
Object Size KB

2

4

6

8

10

MB/sec
Read Throughput After Two Overwrites

● Filesystem ■ Database

Out[101]=

●

●

●

■
■

■

200 400 600 800 1000
Object Size KB

2

4

6

8

MB/sec
Read Throughput After Four Overwrites

● Filesystem ■ Database

a) b)
Figure 2.3. Fragmentation effects on different types of storage [8].

When we consider the idea that no files are overwritten, which might be a possible
scenario in our system’s context, the filesystem starts outperforming the database once
the files are larger than 1MB as shown in figure 2.4. As this work relies on images and
videos in particular that are generally larger than 1MB, it was decided to store these
data in a filesystem [8].

Out[110]=

●

●

●

■

■

■

200 400 600 800 1000
Object Size KB

2

4

6

8

10

12
MB/sec

Read Throughput After Bulk load

● Filesystem ■ Database

5



2. Current State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 2.4. Read throughput immediately after bulk loading the data [8].

2.5 Spatial databases
A spatial database is a data store optimized for geometrical objects. Thereby, we are
able to store our geographical data efficiently and work effectively with them due to
spatial data indexing. Moreover, such databases often provide other useful functional-
ities with these data such as spatial joins, which allow us to append fields from a table
to another table, or functions allowing us to perform different geometrical operations
effectively such as checking whether one objects lies within another object [9].

Several spatial databases were considered to be used, however, all that were not free
and hence not affordable were disqualified. Also, as it is necessary to store other than
geographical data related to particular areas, a relational database was assumed to be
the most convenient means of data storage.

SpatialLite is a spatial extension to SQLite, which is a lightweight file-based database.
Its installation and setup are very simple and for the purposes of development it would
prove to be sufficient, however, in respect to possible further scalability, such as possible
concurrent connections or different database users, this option was discarded.

MySQL and its spatial extension enable the generation, storage and analysis of
geographic features. It has a relatively extensive API and was one of the two main
candidates to be used in this work. Compared to PostgreSQL, however, it was discarded
as some of PostgreSQL’s features outperform the ones of MySQL as demonstrated by
table 2.1. Also, some of MySQL’s functions bear limitations such as querying whether
a point lies inside a polygon; MySQL only finds whether a point lies inside a polygon’s
minimum bounding rectangle while PostGIS can detect any point inside this polygon
as depicted in figure 2.5.

a)MySQL spatial b)PostGIS
Figure 2.5. MySQL spatial vs PostGIS contains functions [10].

Due to previously mentioned reasons, the database used in this work was PostgreSQL,
which is an open source object-relational database with a spatial extension named
PostGIS. It runs on all major operating systems and bears a reputation of being reliable.
At the same time it has an extensive documentation with many examples of how it can
be used and can be natively interfaced from most major programming languages [11].

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 Spatial databases

MySQL spatial PostGIS
Spatial index R tree GIST tree (R tree varieties)
Space type Only 2-D 2-D, 3-D and curve
Space projection Does not support Supports a variety of common

projective coordinate systems

Table 2.1. MySQL vs PostGIS [10].

2.5.1 PostGIS performance

One of the major reasons why spatial databases are efficient with spatial data is that
they provide means of geometrical and geographical data indexing. In PostGIS in-
stead of exploring the attributes and relationships between particular data entries, we
use their corresponding bounding boxes depicted by figure 2.6. Part a of the image
shows different geometrical objects while part b depicts them along with their bound-
ing boxes. Part c then shows the resulting objects that are indexed in the database.
Not only do they occupy much less space in memory then their original shapes, but also
mathematical operations are generally more simple with them. That way we can easily
discriminate between the majority of data in our database and perform more accurate
operations with them thereafter.

a) b) c)

Figure 2.6. PostGIS bounding boxes visualization [12].

As a result, it is possible to store these bounding boxes in an R-Tree index visual-
ized by figure 2.7; it is a height-balanced data structure similar to a B-tree used for
multi-dimensional spaces [12]. Due to this, the average time complexity of a search is
O(logMn) where M is the maximum number of entries in a node and n is the total
number of entries. The time of each insert may vary and its time complexity is O(n)
in the worst case [13].

7



2. Current State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) b)
Figure 2.7. R-Tree visualization [14].

PostGIS provides us with many functions such as one which returns true if geometry
B fully lies in geometry A; in a similar way there are other functions to be found, e.g.
querying whether two geometries intersect, if they form a ring or one that constructs a
convex hull of a set of points and many more.

2.5.2 Comparison with a commercial solution
A commertial alternative to PostGIS is Oracle Spatial. One might expect an IT com-
pany of such a size to perform better than an open source development community of
a few dozen core developers, but due to results of a benchmark [15] comparing Oracle
11g and Postgres 9.04/Postgis 1.5.2 that is not the case. The authors of this benchmark
claim:

From the experimental results that we saw, we can conclude that Postgres performs
better than Oracle 11g both in the Cold Phase and Warm Phase. Though in few queries
Oracle 11g performed better but on the whole Postgres overpowered Oracle 11g. In
the warm phase in 3 out of 4 queries Postgres performed significantly well, from this
we can conclude that Postgres has better automatic memory management capabilities
and page replacement policies. May be Oracle 11g needs more tuning to perform bet-
ter. And also in the Cold Phase, Postgres performs significantly well except in few
cases such as in the Adjacency Operation (TOUCH). Since Postgres uses the under-
lying GEOS(Geometry Engine - Open Source) library functions for implementing the
geometric operations whereas Oracle 11g implements them on its own, and since in
majority Postgres performs well, we can conclude that GEOS geometric algorithms are
more efficiently designed than Oracle 11g. And also Postgres planner is more efficiently
designed to take advantage of any available indexes to use in queries for achieving bet-
ter performance whereas in Oracle 11g we saw that we have to specify them explicitly
through functions. On the whole it is the open-source that wins the game [15]!

There are other factors affecting the outcome such as that PostGIS was run on Linux
while the Oracle database was run on Windows or neither did the author try to optimize
the databases’ environments; therefore both were run with default parameters, which
might otherwise change the outcome entirely.

8



Chapter 3
Design

This chapter describes the general work flow of the proposed solution and will try to
familiarize the reader with all its relative concepts; chapter 4 will then describe these
processes in detail.

The goal of this work is to allow for repeatable area monitoring and surveillance
by an operator using a UAS with a mounted camera. This operator would guide a
UAS through an area and capture images or videos, which would then be stored in a
persistent storage along with other relevant data. The area may be scanned by multiple
cameras and at different times such as on weekly/daily basis and there might be multiple
areas that are monitored - later referred to as Monitored areas. However, the system is
not limited only to UAS controlled by an operator, but to any sensory data that comes
along with all the necessary information required for the algorithms described in this
work, such as stationary cameras or automated UAS.

Afterwards, it should be possible to seek out arbitrary objects in these videos and
images based on their geographical coordinates across the entire database with the
possibility of additional filters, such as the time when the data were taken, the monitored
area the data were taken in or the direction the object of interest was viewed from.

As the main purpose of this work is to enable an arbitrary object look up in sensory
data, these data also need to describe the area being captured. This process can be
divided into several phases and all of them are described in this chapter; the diagram
3.1 serves as its outline.

Figure 3.1. Work flow diagram.

9



3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Data acquisition - components

All data acquisition was done using a drone (Y6 hexacopter) depicted by figure 3.2,
composed of multiple components described below. Its complete schema is depicted in
figure 3.3.

a) b)

Figure 3.2. Y6 hexacopter used to acquire data.

Figure 3.3. Wiring of the Y6 hexacopter [16].

3.1.1 u-blox NEO-M8N

The NEO-M8 series utilizes concurrent reception of up to three GNSS systems -
GPS/Galileo, BeiDou and GLONASS and recognizes multiple constellations simultane-
ously to provide better postitioning accuracy in scenarios where urban canyon or weak
signals are involved. The NEO-M8N depicted in figure 3.4 offers high performance also
at low power consumption leves, which makes it a suitable candidate for drones where
the power supply is limited [17].

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Data acquisition - components

Parameter Specification Value
Horizontal position accuracy Without aiding 2.5 m
Horizontal position accuracy SBAS 2.0 m
Velocity accuracy 0.05/s
Heading accuracy 0.3 degrees

Table 3.1. NEO-M8 specifications [17].

Figure 3.4. NEO-M8 series - 12.2 x 16 x 2.4 mm [18].

3.1.2 ArduPilot Mega 2.6
Ardupilot Mega (APM) depicted in figure 3.5 is a professional quality IMU autopilot that
is based on the Arduino Mega platform. This autopilot can control fixed-wing aircraft,
multi-rotor helicopters, as well as traditional helicopters. It is a full autopilot capable
for autonomous stabilisation, way-point based navigation and two way telemetry with
Xbee wireless modules [19]. It has an open source autopilot firmware supporting planes,
multicopters, helicopters and ground rovers with a logging memory providing 4MB of
space.

All the rotations that are necessary for the camera’s calculations are obtained from
the autopilot’s Inertial Measurement Unit (IMU) as for the purposes of development
the camera was fixed underneath the drone in a constant angle; that way all the drone’s
rotations can be translated to the camera. It should be noted the camera is positioned
approximately 20 cm away from the IMU which is why during the pitch and roll ro-
tations1 its position is slightly off-set from NEO-M8N. However, during development
this off-set was neglected as the positioning accuracy range of NEO-M8N is far bigger
then this off-set. If there was a need to use a gimbal for the camera in the future, its
rotations need to be taken into account.

1 These rotations are explained in section 4.5.

11



3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Figure 3.5. ArduPilot Mega [19].

3.1.3 GoPro HERO 4 Black
GoPro HERO 4 Black depicted in figure 3.6 is a small action camera offering high
quality imaging along with variable parameters, that can be set by their users, such as
field of view (FOV), resolution, frame rate, etc. It is both light and small, thereby it can
be conveniently mounted on drone without significantly changing its flight properties.
Despite this, it also offers sufficient battery life and disk space. Using wide field of view,
however, applies rather a significant distortion to its images that needs to be taken into
account and in some cases corrected.

V.FOV deg H.FOV deg Diag. FOV deg
4 x 3 Wide 94.4 122.6 149.2
4 x 3 Medium 72.2 94.4 115.7
4 x 3 Narrow 49.1 64.6 79.7
16 x 9 Wide 69.5 118.2 133.6
16 x 9 Medium 55 94.4 107.1
16 x 9 Narrow 37.2 64.4 73.6

Table 3.2. GoPro Field of View [20].

The sensor dimensions are 6.17 mm x 4.55 mm, which might be useful while calcu-
lating the camera’s focal length as GoPro’s specifications available online [20] list only
focal length equivalent for all FOVs (e.g. 9.5-11mm range), which are 17.2mm, 21.9mm
and 34.4mm for wide, medium and narrow FOV respectively. Further on, it will be
explained how the real focal length was calculated after camera calibration had been
performed.

Figure 3.6. GoPro HERO 4 Black [21].

The GoPro camera also offers a wide variety of image resolutions (up to 4k) along
with adjustable frame rate ranging from 24 up to 240 fps; not all the resolutions permit
all fps settings, however.

3.1.4 Data acquisition - format
The flight data is recorded in a file by the autopilot but for purposes of this work and
for the reason that the output file includes other unnecessary entries, the data needs
to be filtered out. Also, as it is convenient to assign the camera’s current attitude

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Data mapping

to individual video frames and as it is not always received at the time of each frame,
particularly when dealing with high frame rates, it is required to interpolate the data
between two attitude entries.

The resulting data set then consists of entries each having a timestamp, longitude,
latitude, altitude, roll, pitch and yaw.

3.2 Data mapping
Since this work uses the PostGIS database to store data, it was necessary to decide,
which coordinate system to use. PostGIS offers two spatial types called geography and
geometry. Geography uses geodetic measurements contrary to geometry, which uses
Cartesian measurements. The advantage of geometry is that it provides a richer set of
functions than geography and is generally faster since calculations on a sphere are more
complicated. For these reasons geometry was selected as the used format.

The trade-off of this approach are imprecisions that arise due to coordinate conver-
sions as explained in section 4.4. It is up to further studies, whether the performance
and functionality improvements of geometry can be out-weighted by using the more
precise geography format.

Consequently, the recorded data have to be categorized into so called Monitored
Areas as explained at the beginning of this chapter. Each of these areas have their own
Cartesian coordinate system with its origin specified in an arbitrary GPS coordinate
in this area, which is then necessary for any other conversion from GPS to Cartesian
coordinates in this area. In this work, the first coordinate ever recorded in a given area
is used as its orgin.

3.2.1 Mapping algorithm
Basic algebraic approaches were used to describe the area being captured and are further
explained in chapter 4. In principle, 4 rays are created outlining the corners of the
camera’s field of view. Then we look for intersections of these rays with the ground; if
the camera’s rays look over the horizon and thus they intersect the ground behind the
camera, a limiting distance is set defining the farthest viewed area. This approach is
explained more in detail in the following chapter in section 4.5.2. Afterwards, a convex
hull of these points and the camera’s current position is built, which defines a polygon
representing the viewed area projected on the ground. This polygon is then saved to
the database along with the camera’s attitude for each image or each video frame of a
video that is stored.

The reason for this simplification is that it can be discriminated between frames and
images definitely not containing a point of interest and frames possibly containing it
doing only 2-dimensional operations. These 2-dimensional operations are fast, partic-
ularly due to PostGIS’ spatial index and functions that can find 2-dimensional objects
containing a point, compared to more complicated 3-dimensional operations, especially
while working with large data sets. Afterwards, using the smaller processed dataset, a
more precise check is performed whether the point of interest lies within the camera’s
field of view by forming 4 planes surrounding it and computing whether the point of
interest lies within it. Figure 3.7 depicts a scenario when two objects are possibly lying

13



3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
within the camera’s field of view, however, only one (the hexagon) will pass through a
3-dimensional check.

Figure 3.7. False 2d detection.

3.2.2 Additional filtering

As one database may contain data gathered from multiple Monitored areas that might
otherwise be unrelated and in order to be able to discriminate between these areas and
to minimize the data set a point of interest is being searched in, a database entity rep-
resenting a monitored area was created. This entity has an attribute bounding polygon
representing the maximum area covered by all video frames or images bound to this
area described in the GPS coordinates. As new frames are added to the database, it
is necessary to adjust the bounding polygon accordingly. This slows down the post-
processing time when adding new data to the database, however, the search time is
improved. The advantage of this approach is that we can either query the database for
all areas possibly containing a point of interest and it is possible to verify whether a
monitored area contains one.

3.3 Data storing

As stated earlier the PostgreSQL database along with the PostGIS extension was used
to store data; a simplified model shown in figure 3.8 describes the idea of how it is
done. As areas, in this work’s context, are meant to be monitored over time, an entity
MonitoredArea was created that groups all DataSets related to them. Each DataSet
then groups all its corresponding video frames or images. Using the IS-A database
approach [22], it is possible to store both picture sets and videos.

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Data storing

Figure 3.8. Simplified database schema.

15



Chapter 4
Implementation

In this chapter, the algorithm used to find a point of interest in the gathered sensory data
will be described in detail along with technical details accompanying the development.
The algorithm seeking out data with a point of interest is demonstrated by diagram
4.1.

Figure 4.1. Point of interest search flow.

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Telemetry acquisition

This chapter explains the proposed solutions while the following chapter Experiments
deals with their practical implementation and demonstrates their results. First, it will
describe how the necessary data were acquired, afterwards how they were processed
and in the end the approach of how they were stored.

4.1 Telemetry acquisition
The telemetry is collected by components described in chapter 3. The resulting data
file consists of entries recorded at different times. Each of them consists of different
information, such as rotations in axes, GPS coordinates with time and the current
uptime. As we need the real world time of each entry, using a MATLAB script we
parse these data and using the GPS time contained in some entries and the autopilot’s
uptime contained in all entries, we interpolate the real time of all of them.

4.2 Camera calibration
Another important data component are images and videos. Throughout development
it became clear that additional operations with images and videos would be necessary,
therefore there was a need to find out the camera’s intrinsic parameters.

In order to get the exact parameters of the GoPro camera such as its horizontal and
vertical field of view along with its principal point of view and its distortion coefficients,
it was necessary to perform a camera calibration. Also there was a need to verify the
correctness of the drone’s telemetry doing odometric calculations using the recorded
sensory data, which requires these same parameters. The last but not the least purpose
of the camera calibration was to get rid of the lens distortion. Since GoPro uses a
fisheye lens, the image taken is not rectangular and is distorted as depicted by figure
4.2. Later on, it is going to be made clear that the mapping calculations, which assume
the viewed area is rectangular, would not be correct in all parts of the image otherwise.

Figure 4.2. Barrel distortion.

All of the camera calibration software that was used, uses OpenCV’s methods.
OpenCV is an open source computer vision library released under the BSD license.
It is written in C++, however, it provides wrappers in other languages such as Python

17



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
or Java. As GoPro natively does not allow for video streaming in the correct resolution,
it is necessary to capture the camera calibration data first and then use them with the
appropriate calibration software.

Several approaches were tried, but due to GoPro’s significant distortion often yielded
incorrect results. Finally, a correct calibration was performed using Camera Calibration
Toolbox for Matlab [23].

4.2.1 Calibration procedure
Geometric camera calibration estimates the parameters of lens and image sensor of a
camera. These parameters can be used to correct for lens distortion and perform other
operations with the scene.

The calibration itself is generally done by capturing images of a chessboard, which
is positioned towards the camera at different angles in every image. The calibration
software then extracts the chessboard’s corners and tries to estimate the camera’s pa-
rameters based on the images’ distortion.

Camera Calibration Toolbox for Matlab first loads the chessboard images. A naming
convention should be followed and the chessboard images should be of the same format.
They should be numbered and, as it was noted during this work’s calibration, the
numbers should not be too high with gaps between them, otherwise the performance is
decreased significantly. For instance, having numbered the images 1, 359, 578, ..., 2580,
2960 made the procedure take hours, while numbering them from 1 to 20 took up to
several minutes.

By running calib gui.m file and following the toolbox’s tutorial [23], the images are
loaded into memory and the procedure begins. First, it is necessary to manually select
the inner grid corners as depicted in figure 4.3.

Figure 4.3. Extracted corners.

After the grid corner extraction of each image, it is necessary to guess the radial
distortion factor. This operation helps the toolbox find the chessboard corners’ positions
and it is simply a matter of guessing. Depending on the lens distortion type, it is either

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Camera calibration

a positive or a negative number. In this work, the coefficient ranged between 0 and
-1.45. Figure 4.4 shows how the grid corners are positioned before the estimate while
figure 4.5 depicts the corners afterwards.

Figure 4.4. Before radial distortion factor estimate.

Figure 4.5. After radial distortion factor estimate.

The calibration software then finds the grid corners more precisely, however, it is
important to try to make the initial estimate as precise as possible, otherwise the
automatic corner extraction might fail. Once all the grid corners have been extracted,
we run the camera calibration procedure and get the camera calibration matrix. For
each of our images we can display the reprojection error seen in figure 4.6; if its value
is too high, we can perform the corner extraction for particular images again, tune the
corner extraction parameters accordingly and run the camera calibration again.

19



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.6. Reprojection error in pixels.

Initially, this matrix includes solely 4 distortion coefficients, thereby if we want to
compute all 5 that can be computed, it is necessary to activate them by executing:

est_dist = [1;1;1;1;1];

In a similar way, some of the distortion coefficient might be rejected from the calculation.

4.2.2 Calibration results
Table 4.1 represents the resulting calibration matrix of the GoPro camera at ultra wide
viewing angles and resolution of 1280/720 pixels. The resulting focal length and the
principal point of view are then expressed in pixels. Since the center of such a resolution
is at pixel 640/360, it means the principal point of view is 22 pixels towards the top
and 23 pixels to the right from the center of the image.

Parameter Value
Focal Length [ 582.18394 582.52915 ] ± [ 0.77471 0.78080 ]
Principal Point of View [ 663.50655 378.74541 ] ± [ 1.40781 1.13965 ]
Skew [ -0.00028 ] ± [ 0.00056 ] =>

angle of pixel axes = 90.01599 ± 0.03208 degrees
Distortion [ -0.25722 0.09022 -0.00060 0.00009 -0.01662 ]

± [ 0.00228 0.00276 0.00020 0.00018 0.00098 ]
Pixel error [ 0.30001 0.28188 ]

Table 4.1. Calibration matrix.

Having calculated the distortion coefficients, it is now possible to rectify our images
and compute their field of view. That way, we eliminate any possible issues with image
distortion inaccuracy as stated earlier. Figures 4.7 and 4.8 demonstrate the difference
of an image before and after being undistorted.

It is notable, as the image is rectified, that parts of it around its edges get cropped
in order for the image to maintain a rectangular shape.

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Odometric calculations

Figure 4.7. Distorted image. Figure 4.8. Undistorted image.

Parameter Value
FOVh 95.41677635378488
FOVh 63.43170132212425

Table 4.2. FOV of a rectified image.

Using OpenCV ’s functions, we then calculate the viewing angles of the rectified
image, as displayed in table 4.2.

In order to verify these results, an experiment described in section 5.2 was performed.

4.3 Odometric calculations
In order to verify the correctness of our drone’s sensors, odometric calculations were
used. The goal was to be able to take two consecutive video frames and estimate the
camera’s movement.

OpenCV provides such methods, however, calculating the camera’s rotation and
translation is a process composed of several steps:

1. Loading two images and converting them to grayscale.
2. Identifying key points of these images using the SURF (Speeded Up Robust Features)

algorithm.
3. Matching these key points together.
4. Finding an essential matrix.
5. Recovering the camera’s pose.

The reason why it is necessary to convert the images to grayscale is that the SURF
algorithm is designed for 8-bit grayscale images for the sake of performance [24].

4.3.1 Feature detection
In order to perform the previously mentioned operations with two images, it is necessary
to find common points in two images also referred to as key points. These key points are
selected independently at distinctive locations in the image, such as corners, blobs and
T-junctions. It is necessary that finding such key points is a repeatable operation under
different conditions. The neighborhood of every such point is described by a feature
vector, which has to be distinctive and at the same time robust to noise or geometric
and photometric deformations [24].

21



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
As the SURF algorithm was removed from OpenCV, which can be downloaded on

the official website, and was moved to its extra modules, it is necessary to do a cus-
tom OpenCV compilation with these extra modules. Using CMake, we specify the
required compiler and the directory with OpenCV ’s source files. Running Config-
ure enables us to set additional build properties where it is important to set the
OPENCV EXTRA MODULES PATH variable to the directory containing the extra
modules (natively opencv contrib\modules). On Windows, it is required to set the
Java HOME environment variable correctly and install Apache Ant properly. Also in
order for the compilation to run successfully, it was necessary to disable to following:

• BUILD SHARED LIBS
• BUILD opencv aruco
• BUILD opencv xphoto
• WITH WEBP
• WITH PTHREADS PF

Also, Python needs to be installed in order to generate the Java OpenCV wrapper.
Afterwards, the compilation was run successfully and the SURF algorithm ready to
use. Figure 4.9 shows features detected in an image.

Figure 4.9. Feature detection.

4.3.2 Feature matching

Matching features of one image with features of another image was done by the
OpenCV ’s Brute-Force matcher. The algorithm takes a feature from one set and
computes the distance using its distance calculator with all features from the other set.
The closest feature is then returned [25]. Feature matching does not care whether the
matched features are matched correctly, it just matches the two most probable pairs
according to its distance calculator implementation.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3 Odometric calculations

Figure 4.10. Feature matching.

Figure 4.10 shows how different key points are matched together and we can see that
some of the key points were matched incorrectly. In the following section, it is explained
which algorithms are used to filter out these incorrect matches.

4.3.3 Essential matrix
An essential matrix can be seen as a 3x3 matrix establishing constraints between two
sets of matching image points that can be calculated in a calibrated environment. It
encapsulates both the intrinsic (optical center, focal length) and the extrinsic (cam-
era’s location in the 3-d scene) parameters of the camera. Thereby, calculating and
decomposing this matrix allows us to identify the relative position of a camera (or two
cameras) between two images.

OpenCV provides us with means of computing such a matrix. In order to discriminate
between good matches (inliers) and bad matches (outliers) from the previously matched
set of key points, we can specify a method used for such a discrimination. OpenCV
offers two methods - LMedS (Least Median of Squares) and RANSAC (Random sample
consensus), which was used for our calculations.

Afterwards, we can recover the camera’s pose and get its relative position by de-
composing the essential matrix using OpenCV ’s functions; such a decomposition then
yields a rotation (1) and a translation matrix describing the relative position of the
camera between the two images. In order to get rotations in axes x, y, z, we perform
the following calculations.

R =


a00 a01 a02
a10 a11 a12
a20 a21 a22

 (1)

Using Java’s Math.atan2() function we compute camera’s roll (2), pitch (3) and yaw
(4)1.

roll = arctan2(a10, a00) (2)

pitch = arctan2(a12, a22) (3)
1 These rotations are explained in section 4.5.

23



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yaw = arctan2(a20,
√
a2

21 + a2
22) (4)

At this moment, all the tools necessary for data verification were ready to use and
various experiments could be performed.

4.4 Data mapping
One of the first tasks of this work was to define an approach of how to describe the
recorded sensory data and store them in a database. The general idea is to calculate
the area being captured described by a geometrical shape based on the drone’s attitude
and its camera’s parameters. Since the coordinates of the camera are expressed in the
geographic coordinate system (GPS), and as it is in this work’s context due to real time
performance as well as PostGIS’ API often convenient to use Cartesian coordinates, it
is necessary to perform a coordinate conversion beforehand.

As depicted in figure 4.11, it is necessary to do a transformation from a spherical
system defined by axes X,Y, Z and origin OE to a coordinate system defined by axes
x, y, z and origin OGS . In our calculations, we consider Earth to be a perfect sphere.

Figure 4.11. Coordinate system transformation [26].

Converting any other arbitrary point requires OGS in order to be performed correctly.
However, due to the curvature of Earth, the farther away the converted points are from
OGS the more significant the conversion error is as depicted in figure 4.12.

Figure 4.12. Curvature of Earth error.

Table 4.3 shows how the error differs with increasing distance considering Earth to
be a perfect sphere with a radius of 6371 kilometers.

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Mapping algorithm

Distances Altitude difference
100 m 0.00078 m
1000 m 0.078 m
10000 m 7.84 m

Table 4.3. Elevation error.

4.5 Mapping algorithm

In this section, the main algorithm further referred to as mapping algorithm which maps
the collected data to the database will be described and the reader will be familiarized
with the entire process in detail.

4.5.1 Bounding polygon

In order to describe the sensory data taken, basic algebraic approaches were used. We
can assign the following camera’s attributes to each frame:

• latitude
• longitude
• altitude
• roll
• pitch
• yaw
• vertical field of view (FOVv)
• horizontal field of view (FOVh)

The whole visible area being captured by the camera can be described by a frustum
as depicted by blue lines in figure 3.7. For our algorithm it is necessary to calculate
the projection of this frustum on the ground. That is done by finding the base of the
frustum and connecting it to the camera’s position omitting its altitude. In order to
find the bottom corners of this frustum on the ground, we create 4 rays describing its
sides and we look for intersections with the ground approximated by a plane. Vectors
(5) define these rays facing down along the z-axis.

ray1 = (tan(FOV h/2), tan(FOV v/2), −1)
ray2 = (tan(FOV h/2), − tan(FOV v/2), −1)
ray3 = (− tan(FOV h/2), − tan(FOV v/2), −1)
ray4 = (− tan(FOV h/2), tan(FOV v/2), −1) (5)

25



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.13. Rays constructed by (5).

Before we look for intersections with the ground, it is necessary to rotate the rays
according to the camera’s parameters. A yaw α is a rotation about the z-axis that can
be described by a rotation matrix (6).

Rz(α) =


cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (6)

A pitch β is a rotation about the y-axis described by a rotation matrix (7).

Ry(β) =


cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

 (7)

A roll γ is a rotation about the x-axis described by a rotation matrix (8).

Rx(γ) =


1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 (8)

Each of these matrices is an extension of a 2-dimensional rotation matrix, essentially
performing a rotation with respect to two coordinates while leaving the third one un-
changed. A single rotation matrix (9) can be formed by multiplying the yaw, pitch and
roll rotation matrices. R(α, β, γ) performs the roll, pitch and yaw rotations respectively
[27].

R(α, β, γ) =

=


cos(α) cos(β) cos(α) sin(β) sin(γ) − sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ) − cos(α) sin(γ)

− sin(β) cos(β) sin(γ) cos(β) cos(γ)

 (9)

Using the final rotation matrix (9), we can get the real frustum defining the area
visible by the camera given by the rotated ray-vectors. Figure 4.14 depicts what such
a rotated frustum looks like and it can be seen how the original rectangle is distorted.

26



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Mapping algorithm

Figure 4.14. Rays constructed by (5) and rotated by (9) in all three axes.

Using these vectors, we can find the points of intersection with the ground approxi-
mated by a plane −z = 0. The code numbered 4.15 describes how such a calculation is
performed. The parameter Vector3d origin represents the camera’s position in Carte-
sian coordinates.

public static Vector3d findRayGroundIntersection(Vector3d ray,
Vector3d origin) {

// Parametric form of an equation
// P = origin + vector * t
Vector2d x = new Vector2d(origin.x,ray.x);
Vector2d y = new Vector2d(origin.y,ray.y);
Vector2d z = new Vector2d(origin.z,ray.z);

// Equation of the horizontal plane (ground)
// -z = 0

// Calculate t by substituting z
double t = - (z.x / z.y);

// Substitute t in the original parametric equations
// to get points of intersection
return new Vector3d(x.x + x.y * t, y.x + y.y * t, z.x + z.y * t);
}

Figure 4.15. Ray-ground intersection calculation written in Java.

Having calculated the base of the frustum, we have to complete the polygon on the
ground bounding the camera’s view. That is done by taking the points of intersection
along with the camera’s position with zero altitude and constructing a convex hull. A
convex hull of a set of points is the smallest convex polygon for which each point of this
set lies within its interior or lies on its edge [28]. An example of a convex hull can be
seen in figure 4.16.

27



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.16. Convex hull example [29].

A visualizer was written for the purposes of development to help both to visualize
the problematics and to verify various assumptions. Figure 4.17 visualizes the whole
frustum with its base painted in black. In figure 4.18, we can then see the bounding
polygon (painted in red) of a possible field of view.

Figure 4.17. Frustum describing the camera’s visible area.

28



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Mapping algorithm

Figure 4.18. Bounding polygon.

4.5.2 Limiting the distance of view
Since the camera can be looking over the horizon and thus the rays defining the viewed
area would not intersect the plane describing the ground correctly, there was a need to
limit the distance of view in such a case. As all the previously mentioned calculations
are done at the center of the coordinate system as well as the origin of the ray-vectors
is (0, 0, z) where z is the camera’s altitude, we can expect the point of intersection
with the ground to lie in the same quadrant as the direction of its corresponding ray-
vector. Thereby, if the point of intersection lies in a different quadrant, we detect
that the camera is looking over the horizon. In order to limit the range, we define a
variable dmax being the maximum distance of view. Using equations (10) we calculate
the maximum distance, ergo a corner of our bounding polygon.

x = xray ∗ dmax

y = yray ∗ dmax (10)

It is subject to further studies to optimize this variable dmax as it is dependent
on many factors such as the camera’s resolution, current weather conditions or the
illumination of the surrounding environment. For the purposes of this work, a fixed
constant was used as dmax.

4.5.3 Translation of the bounding polygon
So far, all calculations have been done in the coordinate system’s origin instead of the
camera’s position and it is necessary to adjust the results accordingly. Once all other
operations have been done, the resulting bounding polygon needs to be translated to
its real position. That is done by adding the camera’s Cartesian coordinates to each of
the bounding polygon’s corners.

29



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.5.4 Additional filtering

To allow for additional data filtering and speeding up the search of a point of interest, it
was decided to form bounding polygons of all monitored areas. This way while looking
for a point of interest, it is not necessary to go through all data sets (picture sets, video
frames) in the database but only to check those associated with the monitored areas
possibly containing it. PostGIS’ index allows for a quick look up of these areas and thus
quickly filtering out unnecessary data sets. As for the whole monitored areas’ bounding
polygons, a different approach was used than for each frame’s bounding polygon cal-
culation described previously. Finding the right monitored area of a point of interest
one is trying to seek out in frames and images requires the monitored areas’ bounding
polygons to be stored in the GPS coordinates. Only once the corresponding monitored
area has been found, it can be converted into its Cartesian coordinates. Thereby, since
we need to store these bounding polygons in spherical coordinates (GPS), the ray-plane
intersection approach would not work.

The first approach to deal with this issue was to use the coordinates of all frames’
bounding polygons in Cartesian coordinates, calculate a convex hull and convert its
coordinates back to GPS. As each of these conversions introduces a slight error, the
resulting convex hull rendered to be inaccurate, sometimes being smaller that it should
be and thus possibly making a search of a point of interest impossible; thereby this
approach was abandoned.

Afterwards, another approach that proved to be functional was selected. As we
calculate bounding polygons of each frame, we take the camera’s GPS coordinates
and using an external library [30] we compute two other coordinates defining a square
which represents a bounding polygon of the maximum possible viewed distance given
by a constant dmax. Formally it is an array of two elements such as

• The latitude of any point within the specified distance dmax is greater or equal to the
latitude of the first array element and smaller or equal to the latitude of the second
array element.

• If the longitude of the first array element is smaller or equal to the longitude of the
second element, then the longitude of any point within the specified distance dmax is
greater or equal to the longitude of the first array element and smaller or equal to
the longitude of the second array element.

• If the longitude of the first array element is greater than the longitude of the second
element (this is the case if the 180th meridian is within the distance dmax), then the
longitude of any point within the specified distance dmax is greater or equal to the
longitude of the first array element or smaller or equal to the longitude of the second
array element [30].

In other words, using these two new coordinates, we can form a bounding polygon
of a circle limiting our field of view defined by the previously mentioned constant dmax.
We continuously compute these bounding polygons, add their corners to a list and in
the end compute a convex hull defining the whole monitored area’s bounding polygon.
It is important to include points of a previously computed monitored areas’ bounding
polygon if such a polygon exists. Figure 4.19 depicts a situation where 4 images were
taken in a monitored area, their maximum possible viewed radii along with the radii’s
bounding polygons and the convex hull - a bounding polygon - of the whole monitored
area.

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Mapping algorithm

Figure 4.19. Monitored area - convex hull.

This approach is not optimal as extra space is being included in the bounding polygon.
However, its main purpose is to filter out monitored areas definitely not containing a
point of interest, which would only be an issue in a case where this extra space in the
bounding polygon would intersect one of another monitored area. In such a case the
search time would increase.

A more precise approach would be, for instance, to calculate points of intersection, as
it is done with a plane representing the ground in Cartesian coordinates, using spherical
geometry. However, due to time constraints such an approach was not tested.

4.5.5 3-dimensional check

Up until now the algorithm was solely trying to discriminate between data definitely
not containing a point of interest and data possibly containing it. As a result, verifying
whether a point of interest lies within a particular set of images can be performed faster
since the data set we work with now is significantly smaller.

The 3-dimensional check uses basic algebraic approaches; first we compute the equa-
tions of planes defining the camera’s viewed area neglecting it is a frustum but consid-
ering it as a pyramid. That is done by using the previously defined rays (5) always
taking a neighboring pair and calculating their cross product resulting in a norm vec-
tor of one of the pyramid’s sides. Afterwards, we compute the dot product of each
plane’s normal with the point of interest, which yields the distance from the plane and
the point. If the result is in all 4 cases positive, the point of interest lies within the
pyramid, otherwise it lies outside. This approach is visualized by figure 4.20.

31



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.20. 3-dimensional check example.

4.6 Database structure
As mentioned before, the database used in this work is PostgreSQL with its spatial
extension PostGIS. In this section we will discuss and describe the database model
used. The requirements for the database were to be capable of storing information
both about videos and image sets taken by a camera mounted on a drone. It needs
to store everything required for this project’s necessary calculations as well as enable
quick data search and scalability. At the same time it needs to be able to avoid data
redundancy creation and thus possibly preventing insertion, deletion and modification
anomalies. This process is achieved through database normalization. Figure 4.21 de-
picts the database relational schema.

Figure 4.21. Database model.

32



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Database structure

The main entity is called MonitoredArea. It represents an area, object or a set of
objects that lie in a geographical proximity. It is defined by the following attributes:

• id: The primary key of each MonitoredArea that is generated automatically.
• name: A unique name containing up to 250 characters.
• bounding polygon: Bounding polygon of the entire area in GPS.
• origin: Point used for coordinate conversion from GPS to Cartesian coordinates and
back. By convention, it is the first coordinate from the first dataset saved in the
database that is related to the corresponding MonitoredArea. While building create
statements, it is important to change the data type of origin from point to pointZ.

DataSet represents a particular data collection. The IS-A database approach [22]
enables us to store the information about picture sets or videos in the database using
the same base entity and is similar to object inheritance in object oriented programming.
The benefit of this approach is that it prevents us from introducing redundant data to
the database.

• id: The primary key of a data set that is generated automatically.
• monitored area id: The foreign key identifying the data set’s corresponding moni-
tored area.

• path: A path to a video file or a directory containing images.
• timestamp: Defines the time when the data set was created in Epoch time format.
In other words, timestamp is the number of milliseconds that have elapsed since 1
January 1970.

• FOV vertical: Vertical field of view of the camera used to capture this data set.
• FOV horizontal: Horizontal field of view of the camera used to capture this data set.

One of two tables specifying the type of a data set is PictureSet defining that a
DataSet is a set of images.

• id: The primary key that is generated automatically.
• data set id: The foreign key identifying the corresponding DataSet.

And similarly Video defining that a DataSet is a video.
• id: The primary key that is generated automatically.
• data set id: The foreign key identifying the corresponding DataSet.
• fps: Frames per second of the video.

Frame represents either one frame of a video in case of a video set or one image in
case of a picture set using the IS-A approach again [22].

• id: The primary key of a frame that is generated automatically.
• data set id: The foreign key identifying the corresponding DataSet.
• bounding polygon: Bounding polygon of the area viewed by the camera on the
ground in Cartesian coordinates.

• camera coordinates: Camera’s Cartesian coordinates.
• camera heading: Camera’s heading (yaw) in radians.
• camera roll: Camera’s roll in radians.
• camera pitch: Camera’s pitch in radians.

Similarly to DataSet, there are two types of Frame.Picture defines a picture set
element.

• id: The frame’s primary key that is generated automatically.

33



4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• frame id: The foreign key identifying the corresponding Frame.
• picute path: The picture’s path on disk.
• date: Date of the picture’s creation.

The other entity describing a video frame is VideoFrame.
• id: The frame’s primary key that is generated automatically.
• frame id: The foreign key identifying the corresponding Frame.
• frame number: Frame’s number in the video.

4.6.1 Additional adjustments
As only constrained columns such as primary keys or unique columns are indexed by
default, it is necessary to add index on columns manually when required. That is done
by command:

CREATE INDEX [index_name]
ON table_name
USING GIST ([column_name]);

A particular example from this work would then be:

CREATE INDEX bounding_polygon_gix
ON "Frame"
USING GIST (bounding_polygon);

It is important to specify the GIST index type, as by default PostgreSQL uses B-Tree
indices, which are not lossy and take up significantly more space than GIST indices
that index only the bounding box of a particular geometry.

After an index has been created, it is important to run:

VACUUM ANALYZE [table_name];

in our case:

VACUUM ANALYZE "Frame";

The ANALYZE command updates the internal database’s statistics and VACUUM
asks PostgreSQL to reclaim any unused space in the table pages left by updates or
deletes to records. When adding an index, VACUUM is necessary for the database to
run effectively. PostgeSQL provides an autovacuum option that is enabled by default
that runs VACUUM ANALYZE automatically at sensible intervals. However, it might
not be a good idea to wait for autovacuum after adding new indices or a big amount of
data [12].

One last thing to note, which is not captured by the diagram 4.21, is that column
origin in table MonitoredArea and column camera coordinates in table Frame need to
be changed from type point, which allows only for the x and y coordinates, to type
pointZ, which also adds the z coordinate. The diagram modeler, however, did not allow
for this type.

At this point, it was possible to perform the first experiment that is described in
section 5.1.

34



Chapter 5
Experiments

This chapter will go through experiments implemented throughout the development
of this work chronologically and it will describe their motivation, implementation and
their results.

5.1 Visual experiment
The context of this work’s two visual experiments were fields with several distributed
objects of known GPS coordinates. A previously described drone with a mounted GoPro
camera was used. The experiment was focusing on both objects with zero altitude and
objects at different heights with the camera both facing down and slightly forward and
it was using GoPro’s ultra wide field of view. At the time of both experiments the
weather was windy which notably affected the drone’s behavior.

A short footage of several minutes was taken with the drone hovering randomly
over the fields with the distributed objects and its telemetry was recorded. Then, the
mapping algorithm was used to calculate the necessary data and to map them to the
video footage.

Two approaches were used to verify the correctness of the mapping algorithm. The
first one consisted of writing a data visualizer in Java, which would query the database
for the camera’s viewed area on the ground and visualize it along with the distributed
objects on the ground. Simultaneously, the recorded video would be played and it would
be observed whether in fact the calculated data corresponds to reality. The visualizer
is depicted in figure 5.1 and its corresponding video frame is shown next to it in figure
5.2.

Figure 5.1. Calculated area being cap-
tured displayed by the visualizer.

Figure 5.2. The corresponding video
frame.

35



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The other approach would query the database for all frames containing a GPS co-
ordinate that is within the camera’s field of view. Then it would be verified visually
again whether the GPS position lies in the frame.

5.1.1 Visual experiment - results

The results were satisfying in case the object of interest was located close to the center
of the field of view. However, there was trouble with false detection when the object of
interest was located outside of the image close to its edge. Several possible causes were
identified.

First off, it was necessary to make sure the telemetry and the video were aligned cor-
rectly as they both originated from independent sources. The autopilot starts recording
its telemetry independently of the video since there is no trigger that would activate
the autopilot and the camera at the same time. However, as the telemetry starts being
recorded by the autopilot, a beep of about three seconds long can be heard. It was un-
sure whether the telemetry starts being sent before or after the beep, thereby both the
possibilities were tested in new visual experiments; an odometric experiment described
in section 5.3 was performed thereafter.

The next possible inaccuracy might have been caused by inaccurate attitude retrieved
from the drone’s sensors. That might happen due to different reasons, such as incon-
venient weather conditions or sensor inaccuracy. In that case the resulting calculated
viewed area would differ dramatically from the reality. As, for instance, a larger or
a smaller area that is captured in a video frame or in an image would be calculated
depending on whether the measured altitude was higher or lower than reality. Consid-
ering the image is perfectly rectangular, figure 5.3 depicts how the altitude error of one
meter affects the calculated viewed area with parameters specified in table 5.1 and the
camera facing down.

Parameter Value
Altitude 8m
Roll 0◦

Pitch 0◦

Yaw 0◦

FOVh 118.2◦

FOVv 69.5◦

Table 5.1. Drone’s real parameters of figure 5.3.

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Field of view experiment

Figure 5.3. Altitude error - viewed area.

According to the autopilot’s documentation, the possible and rather common altitude
error might be of up to 2 meters. This might happen due to the fact that when the
UAS is moving, a low pressure bubble may form on top of it leading the sensors to
believe the UAS is climbing.

The last possible reason are the GPS coordinates retrieved that might differ, due to
specifications, by 2 meters [17]. The offset of the GPS position would then equal to the
offset of the calculated viewed area. During this work’s experiments, it was observed
that even though the GPS was accurate most of the time, at times it differed by several
meters, which affected the results dramatically.

As it was assumed that the error might results due to any of these factors or as any
of their combinations, the following step in the development was a calibration of the
GoPro camera, which would enable us to perform odometric calculations and to rectify
the camera’s resulting images and verify the exact camera’s parameters.

5.2 Field of view experiment
In order to verify the correctness of our camera calibration described in 4.2 a visual
experiment calculating the camera’s field of view was performed.

An object, in this case a piece of furniture, of a known size was captured by the
camera at a known distance so that it occupied the entire length from one side of the
image to the opposite one. Afterwards, using trigonometry, the viewing angles were
calculated. Figure 5.4 depicts how such a calculation was performed.

37



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 5.4. Field of view calculation.

The next step was to undistort the previously used image and identify points on the
furniture that limit the image on its opposite sides. Afterwards, the same points on
the furniture used previously were identified and the distance between them measured.
Again, using trigonometry, the new viewing angles were calculated. Figures 5.5 and 5.6
show the images used for our calculation.

Figure 5.5. Distorted image. Figure 5.6. Undistorted image.

5.2.1 Field of view experiment - results
Table 5.2 shows the results of this experiment. The first column specifies the measured
parameter, the second column are the official GoPro’s specifications of a distorted
image, the third column is the result of our experiment of a distorted image, the fourth
column represents the result of our measurement of an undistorted image and the final
fifth column shows the output of an OpenCV function, which takes the camera matrix,
image size and the camera’s sensor dimensions as its parameters.

We can see that the results of our measurements slightly differ from GoPro’s specifi-
cations but this might be due to measurement errors that inevitably occur considering
our limited set of tools (a measuring tape, rulers). However, for the purposes of verifying
the correctness of OpenCV’s algorithm, the results were concluded as satisfying.

38



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Sensor correctness experiment

Parameter (D) Official spec. (D) Measured (U) Measured (U) OpenCV
FOVh 118.2◦ 118◦ 96◦ 95.5◦

FOVv 69.5◦ 68◦ 64◦ 63.5◦

Table 5.2. Field of view experiment results.

5.3 Sensor correctness experiment
Sensor correctness experiment was done using odometric methods described in the
previous chapter. Unfortunately, it was impossible to use the data which were used for
the main experiments as most of the video frames are covered with grass and bushes
and it is difficult for the feature matcher to match the frames’ features correctly.

The experiment consisted of recording a video in a laboratory with different objects
distributed around it with a camera mounted on the same drone that was used during
other experiments simulating its movement in all axes while its telemetry was being
recorded. Afterwards, the data was processed as usual and calculations described in
4.3 were performed. However, it was not feasible to use each two consecutive frames of
the video, perform these calculations and, for instance, compute an average result of a
large data set as not always the feature matcher manages to match the image’s features
correctly. That would happen due to relatively fast movement of the camera resulting
in blurry images or because not enough identical features were captures in both of the
consecutive frames. For this reason, all image pairs had to be chosen manually and then
it had to be verified whether the feature matching had been successful. Movements in all
3 axes were calculated independently of each other. These results were then compared
to the drone’s telemetry.

Before examining the accuracy of the drone’s telemetry, it was necessary to make sure
it was aligned with the video correctly as described previously in 5.1.1. The idea was
to compare all previously mentioned odometric calculations with the drone’s telemetry
assuming two scenarios; it either starts being recorded before or after the beep. First,
it was compared to the time in the video corresponding to the beginning of the beep
and then to its end. It turned out that the telemetry and odometry matched best to
the time after the beep.

5.3.1 Sensor correctness experiment - results
Even though the data set consisted solely of 25 samples (this dataset contained sub-
sets for roll, pitch and yaw rotations, each varying in numbers) for reasons mentioned
previously, the results could provide some idea about how correct the telemetry is. Roll
and Pitch never differed by more than 2 degrees, but most of the time it did not differ
by more than 1 degree. Yaw, however, often yielded results very different from the
reality; the differences were sometimes marginal, however, other times it differed by
more than 30 degrees. The average difference from a data set consisting of 9 samples
was 11 degrees.

5.4 Visual experiment revisited
With all the knowledge acquired in the previous experiments, the visual experiment
described in 5.1 was performed again. This time, however, several adjustments were

39



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
made. First off, the images which were worked with were rectified and the camera’s
field of view used for the mapping algorithm adjusted accordingly. Then, new data sets
were created, used with the mapping algorithm and then their results were compared.
These data sets were identical with the original data set except for their altitude had
been altered. The first new data set had its altitude increased by two meters while the
other one had it decreased. This accounted for the possible altitude error given by the
sensors’ inaccuracy described in the autopilot’s manual.

5.4.1 Visual experiment revisited - results
Figures 5.7 and 5.8 depict the new results of the visual experiments. The horizontal
axis represents the video frames while the vertical axis represents different mapping
algorithm altitudes for the blue, orange and green lines and whether the object of
interest is currently located in the video for the red line. The green, orange and blue
lines represent results of the mapping algorithm. If they are present in the chart, it
means, the object of interest is present in the corresponding video frame; it is not
present otherwise. All these values are arbitrary and were selected so in order to make
the results transparent.

The red line titled as Reality was created manually observing the video frame by
frame and is set to 1 if the object of interest is not visible in the video and is set to 2
if it is visible. The green line titled as Lower means the altitude was lowered by two
meters from what had been received from the sensors while the blue line titled Higher
means the altitude was increased by two meters. The orange line Real represents a
computation performed with the unadjusted data.

In both the charts, it can be seen that the results are not completely accurate. Ideally,
at least one of the three lines representing the mapping algorithm should overlap the
red columns representing whether the object of interest truly lies in the corresponding
video frame and at least one of them should not be present while the object of interest
is not present; that is not, however, always the case.

Out[102]=

500 1000 1500 2000 2500
Video frame

1.0

1.2

1.4

1.6

1.8

2.0

First experiment assuming different altitudes

Higher
Real
Lower
Reality

Figure 5.7. First visual experiment results.

In figure 5.7 there can be seen a false detection before frame 1000 in all the altitudes
and is the least notable in the lowest one. Other false detections worth mentioning in

40



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Scalability

all altitudes are around frame 1700. In this part of the video the object of interest was
located on the edge of the image and occasionally disappeared. In this case, even the
slightest of all the previously mentioned inaccuracies might alter the results and it can
be assumed the incorrect detection arose as their result. From frame 2250, the drone
is positioned several meters away from the object of interest and starts being rotated
around the vertical z axis at a relatively fast angular speed. It can be seen that the
detection is off-set around the last 3 columns, which was presumed had been the result
of the magnetometer’s inaccuracies, but there was no way to verify this presumption.

Out[100]=

1000 2000 3000 4000 5000 6000
Video frame

1.0

1.2

1.4

1.6

1.8

2.0

Second experiment assuming different altitudes

Higher
Real
Lower
Reality

Figure 5.8. Second visual experiment results.

In figure 5.8 the results are visibly incorrect from frame 1000 until frame 2150. Having
reviewed the data used for the calculations, it was found out that the GPS coordinates
of the drone, which were recorded, differed dramatically (by up to 4 meters) and the
camera’s position was assumed to be not in front (facing the object of interest) but
behind it. Eventually the GPS coordinates were corrected and except for some slight
inaccuracies and false detections, the results were correct.

In the end, it seems that the most accurate results are yielded while assuming a lower
altitude but due to time constraints the most precise method of object detection is yet
to be determined in further works.

5.5 Scalability
An important thing to consider in this work’s context was the scalability of its design.
As one of the goals was to build a system enabling storing of large quantities of data
and offering a good real time performance, the database and its ability to handle a
growing amount of data had to be be tested. In this experiment, an entry represents
meta data corresponding to a video frame or an image; therefore 107 entries represent
111 hours of video footage considering a frame rate of 25 frames per second.

5.5.1 Search
The time complexity of a search in an average case, considering the spatial entries do
not overlap, is O(logMn). The worst case time complexity is O(n) if all entries overlap

41



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[13]. M is the maximum number of entries in a node and n is the total number of
entries in the tree.

The experiment consisted of inserting different volumes of randomly generated poly-
gons in the database, performing 1000 of random searches without indexing the spatial
data and then performing the same experiment again, however, this time with a spatial
index. Table 5.3 and figure 5.9 show the results of the experiment. The first col-
umn of the table expresses the number of polygons in the database and the next two
columns show the average search time of one entry with a spatial index and without it
respectively.

Number of polygons Without index With index
103 1 ms 0 ms
104 2 ms 0 ms
105 29 ms 0 ms
106 321 ms 0 ms
107 3722 ms 0 ms

Table 5.3. Time of search.

It is clear that spatial indexing decreases the search time significantly and even with
a large amount of polygons in the database the average search time did not exceed 1
millisecond, while without the index, the search time is increasing linearly as one might
expect since all entries in the database might have to be searched.

Out[98]=

2×106 4×106 6×106 8×106 1×107
Entries in database

200

400

600

800

Time in ms
Time of search

No index

With index

Figure 5.9. Time of search experiment.

5.5.2 Insert
The second aspect to consider was inserting new data to the database. As multiple
columns of the inserted data are indexed, the index tree needs to be balanced in order
to maintain its search properties. A method that is sometimes used is that before a
bulk insert, we drop an index and rebuild it after the insert has finished. Table 5.4 and
figure 5.10 show the results of two inserts with and without a spatial index.

42



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Scalability

Number of inserted polygons Without index With index
103 0.35 s 0.34 s
104 2.6 s 2.5 s
105 27 s 24 s
106 280 s 266 s
107 3190 s 2805 s

Table 5.4. Time of insert.

Out[94]=

2×106 4×106 6×106 8×106 1×107
Entries inserted

500000

1.0×106

1.5×106

2.0×106

2.5×106

3.0×106

Time in ms
Time of insert

No index

With index

Figure 5.10. Time of insert experiment.

The results show an improvement of 6 minutes and 25 seconds of an insert into a
table without the spatial index while inserting a data set of 107 entries. However,
adding the index and running VACUUM ANALYZE afterwards took over 23 minutes
(1380 seconds), which renders this method ineffective. Therefore dropping an index
before inserting a data set of 107 elements and then rebuilding it does not improve the
database’s performance.

43



Chapter 6
Conclusion and future work

This thesis studied the problematics of how to georeference and how to organize sensory
data acquired from Unmanned Aerial Systems and different existing commercial and
non-commercial solutions that are currently being used in this area were explored. An
algorithm allowing for sensory data georeferencing and for searching parts of such data
containing objects of interest given by these objects’ geographical position was designed
and implemented. A solution of organizing and processing such data so it can be stored
and worked with in an effective way was proposed. In the end, the proposed solutions
were tested via experiments using real data and their results were demonstrated.

Various means of how to store geo-spatial sensory data were explored and it was
found out that the PostgreSQL database with its PostGIS extension offers the most
convenient environment for these purposes due to its spatial data indexing and a rich set
of geo-spatial functions it possesses. The algorithm used to seek out sensory data parts
containing objects of interest stores the area visible in each video frame or image in a
2-dimensional format. It takes advantage of PostGIS ’ spatial indexing and its fast 2-d
operations to discriminate between data sets possibly containing an object of interest
and data sets definitely not containing it. As a result, operations used for object of
interest detection are done using only relevant data sets and thus are performed quickly.

Real data used for experiments were acquired using Y6 hexacopter, u-blox NEO-
M8N, ArduPilot Mega 2.6 and GoPro HERO 4 Black. As for seeking out sensory data
containing objects of interest, it was uncovered that the most accurate results were
yielded when the camera lens’ distortion was corrected as it allowed for more precise
geometrical calculations. Also, the biggest inaccuracies arose from inaccurate altitude
measurements and the most accurate results were rendered when considering the UAS’
altitude to be 2 meters below the altitude recorded by the UAS’ sensors. This most
likely happens due to the fact that when the UAS is moving, a low pressure bubble may
form on top of it leading the sensors to believe the UAS is climbing. Other relevant
inaccuracies were caused by u-blox NEO-M8N occasionally recording incorrect GPS
coordinates, or by inaccurate measurements of the UAS’ compass.

Considering the results of the experiments, this work’s solution can be used to or-
ganize sensory data acquired from Unmanned Aerial Systems and to seek out parts of
these data containing objects of interest given by their geographical position. How-
ever, due to measurement inaccuracies, the results are not guaranteed to be correct and
therefore further work is required to make the results more reliable. Other possible im-
provements, that have not been explored due to time constraints, which would improve
the functionality of the proposed methods might include:

• A more precise way of determining the UAS’ position and attitude (geographical
position, roll, pitch, heading), by using more accurate devices or finding a way to
detect incorrect data to be filtered out or corrected.

44



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
• Exploring a way of how to describe and store the image captured by the camera
without image undistortion, allowing for larger areas being recorded.

• Deciding whether the use of PostGIS ’ geography format outperforms the geometry
format as explained in section 3.2.

• Finding a way to reduce the amount of video frame meta data by filtering out similar
frames reducing the size of data saved to the database and speeding up the time of
search and insert.

45



References

[1] M. Blaha, H. Eisenbeiss, D. Grimm, and P. Limpach. DIRECT GEOREFER-
ENCING OF UAVS . 2011.
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-
C22/131/2011/isprsarchives-XXXVIII-1-C22-131-2011.pdf.

[2] ICAO Cir 328. Unmanned Aircraft Systems (UAS). 2011.
http://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf.

[3] Brian P Tice. Unmanned Aerial Vehicles – The Force Multiplier of the 1990s. 1990.
https://web.archive.org/web/20090724015052/http://www.airpower.maxwell.af.
mil/airchronicles/apj/apj91/spr91/4spr91.htm.

[4] Sally French. How drones will drastically transform U.S. agriculture, in one chart.
2015.
https://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.
svg.

[5] Tomas Trafina. Construction of 3D Point Clouds Using LiDAR Technology. 2016.
https://support.dce.felk.cvut.cz/mediawiki/images/d/d3/Bp_2016_trafina_tomas.
pdf.

[6] LLC H2H Associates. Point Cloud Processing / Data Management. 2016.
http://h2hassociates.com/services/point-cloud-processing-data-management/.

[7] Josh Elmore. Photogrammetry. 2016.
http://www.joshelmore.com/photogrammetry/.

[8] R. Sears, C. Ingen, and J. Gray. To BLOB or Not To BLOB: Larger Object Storage
in a Database or a Filesystem? 2006.
https://arxiv.org/ftp/cs/papers/0701/0701168.pdf.

[9] Wiki.GIS.com. Spatial Join. 2016.
http://wiki.gis.com/wiki/index.php/Spatial_Join.

[10] Carrie. MySQL spatial VS PostGIS . 2014.
http://www.programering.com/a/MTNwQjMwATI.html.

[11] The PostgreSQL Global Development Group. PostgreSQL. 2016.
https://www.postgresql.org/.

[12] Mark Leslie, LISAsoft, and OpenGeo. Introduction to PostGIS . 2009.
http://revenant.ca/www/postgis/workshop/indexing.html.

[13] J Pei. R-Tree, Database Systems II, Lecture slides.
http://www.cs.sfu.ca/CourseCentral/454/jpei/slides/R-Tree.pdf.

[14] Marcelo Gattass, and Lopes Helio. FGNG: A fast multi-dimensional growing
neural gas implementation. 2014.
https://www.researchgate.net/figure/260011432_fig2_Fig-2-An-R-Tree-data-
structure-example-Adapted-from-11.

46

http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/131/2011/isprsarchives-XXXVIII-1-C22-131-2011.pdf
http://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XXXVIII-1-C22/131/2011/isprsarchives-XXXVIII-1-C22-131-2011.pdf
http://www.icao.int/Meetings/UAS/Documents/Circular%20328_en.pdf
https://web.archive.org/web/20090724015052/http://www.airpower.maxwell.af.mil/airchronicles/apj/apj91/spr91/4spr91.htm
https://web.archive.org/web/20090724015052/http://www.airpower.maxwell.af.mil/airchronicles/apj/apj91/spr91/4spr91.htm
https://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg
https://en.wikipedia.org/wiki/File:Atomic_force_microscope_block_diagram.svg
https://support.dce.felk.cvut.cz/mediawiki/images/d/d3/Bp_2016_trafina_tomas.pdf
https://support.dce.felk.cvut.cz/mediawiki/images/d/d3/Bp_2016_trafina_tomas.pdf
http://h2hassociates.com/services/point-cloud-processing-data-management/
http://www.joshelmore.com/photogrammetry/
https://arxiv.org/ftp/cs/papers/0701/0701168.pdf
http://wiki.gis.com/wiki/index.php/Spatial_Join
http://www.programering.com/a/MTNwQjMwATI.html
https://www.postgresql.org/
http://revenant.ca/www/postgis/workshop/indexing.html
http://www.cs.sfu.ca/CourseCentral/454/jpei/slides/R-Tree.pdf
https://www.researchgate.net/figure/260011432_fig2_Fig-2-An-R-Tree-data-structure-example-Adapted-from-11
https://www.researchgate.net/figure/260011432_fig2_Fig-2-An-R-Tree-data-structure-example-Adapted-from-11


. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[15] IIT BOMBAY Subham, Roy. Benchmark design for spatial database. 2011.

https://web.archive.org/web/20120813184338/http://www.gise.cse.iitb.ac.in/
wiki/images/c/c4/Finalreport.pdf.

[16] M Zajacik. Control of a heterogeneous team of autonomous UAVs. Master’s Thesis,
Faculty of Electrical Engineering, Czech Technical University in Prague. 2016.

[17] u-blox AG. NEO-M8, u-blox M8 concurrent GNSS modules, Data Sheet. 2015.
https://www.u-blox.com/sites/default/files/NEO-M8_DataSheet_(UBX-13003366).
pdf.

[18] u-blox AG. NEO-M8 series. 2016.
https://www.u-blox.com/en/product/neo-m8-series.

[19] Ardupilot Mega Project. ArduPilot Mega. 2016.
http://www.ardupilot.co.uk/.

[20] B & H Foto & Electronics Corp. GoPro HERO4 Black. 2016.
https://static.bhphoto.com/images/images500x500/gopro_chdhx_401_hero4_black_edition_adventure_1411995078000_1078001.
jpg.

[21] u-blox AG. LEA-6, u-blox 6 GPS Modules, Data Sheet. 2015.
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_(UBX-
14044797).pdf.

[22] J. Fong. Mapping Extended Entity Relationship Model to Object Modeling Tech-
nique. 1995.
http://delivery.acm.org/10.1145/220000/212007/P018.pdf?ip=147.32.83.203
&id=212007&acc=ACTIVE%20SERVICE&key=D6C3EEB3AD96C931%2E9BD1EC80ACA8C1C5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35
&CFID=861014898&CFTOKEN=10594655&__acm__=1478614769_2b58eb74d41a42f5d83831f4d1d0be75.

[23] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab. 2015.
https://www.vision.caltech.edu/bouguetj/calib_doc/.

[24] H. Bay, A Ess, T. Tuytelaars, and L. Gool. ”SURF: Speeded Up Robust Features”,
Computer Vision and Image Understanding (CVIU). 2008, 110 (3), 346-359.

[25] OpenCV. Feature Matching. 2016.
http://docs.opencv.org/trunk/dc/dc3/tutorial_py_matcher.html.

[26] M. Selecký, and T Meiser. Integration of Autonomous UAVs into Multi-agent Sim-
ulation. Acta Polytechnica.. 2012, 52 (5/2012), 93-99.

[27] S M LaValle. Planning algorithms. 2012.
http://planning.cs.uiuc.edu/node102.html.

[28] T. Cormen, Leiserson C., R. Rivest, and C. Stein. Introduction to algorithms. 2002.
[29] A. Abramov. Convex hull: how to tell whether a point is inside or outside? 2016.

https://salzis.wordpress.com/2014/05/01/convex-hull-how-to-tell-whether-a-
point-is-inside-or-outside/.

[30] P. Matuschek, J. Finding Points Within a Distance of a Latitude/Longitude Using
Bounding Coordinates. 2016.
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates.

47

https://web.archive.org/web/20120813184338/http://www.gise.cse.iitb.ac.in/wiki/images/c/c4/Finalreport.pdf
https://web.archive.org/web/20120813184338/http://www.gise.cse.iitb.ac.in/wiki/images/c/c4/Finalreport.pdf
https://www.u-blox.com/sites/default/files/NEO-M8_DataSheet_(UBX-13003366).pdf
https://www.u-blox.com/sites/default/files/NEO-M8_DataSheet_(UBX-13003366).pdf
https://www.u-blox.com/en/product/neo-m8-series
http://www.ardupilot.co.uk/
https://static.bhphoto.com/images/images500x500/gopro_chdhx_401_hero4_black_edition_adventure_1411995078000_1078001.jpg
https://static.bhphoto.com/images/images500x500/gopro_chdhx_401_hero4_black_edition_adventure_1411995078000_1078001.jpg
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_(UBX-14044797).pdf
https://www.u-blox.com/sites/default/files/products/documents/LEA-6_DataSheet_(UBX-14044797).pdf
http://delivery.acm.org/10.1145/220000/212007/P018.pdf?ip=147.32.83.203&id=212007&acc=ACTIVE%20SERVICE&key=D6C3EEB3AD96C931%2E9BD1EC80ACA8C1C5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=861014898&CFTOKEN=10594655&__acm__=1478614769_2b58eb74d41a42f5d83831f4d1d0be75
http://delivery.acm.org/10.1145/220000/212007/P018.pdf?ip=147.32.83.203&id=212007&acc=ACTIVE%20SERVICE&key=D6C3EEB3AD96C931%2E9BD1EC80ACA8C1C5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=861014898&CFTOKEN=10594655&__acm__=1478614769_2b58eb74d41a42f5d83831f4d1d0be75
http://delivery.acm.org/10.1145/220000/212007/P018.pdf?ip=147.32.83.203&id=212007&acc=ACTIVE%20SERVICE&key=D6C3EEB3AD96C931%2E9BD1EC80ACA8C1C5%2E4D4702B0C3E38B35%2E4D4702B0C3E38B35&CFID=861014898&CFTOKEN=10594655&__acm__=1478614769_2b58eb74d41a42f5d83831f4d1d0be75
https://www.vision.caltech.edu/bouguetj/calib_doc/
http://docs.opencv.org/trunk/dc/dc3/tutorial_py_matcher.html
http://planning.cs.uiuc.edu/node102.html
https://salzis.wordpress.com/2014/05/01/convex-hull-how-to-tell-whether-a-point-is-inside-or-outside/
https://salzis.wordpress.com/2014/05/01/convex-hull-how-to-tell-whether-a-point-is-inside-or-outside/
http://janmatuschek.de/LatitudeLongitudeBoundingCoordinates

	TITLE
	Specification
	/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Applications of UAS
	Motivation and goals
	Thesis structure

	Current State of the Art
	LiDAR sensors
	Photogrammetry
	Videos and images
	Data storage
	Spatial databases
	PostGIS performance
	Comparison with a commercial solution


	Design
	Data acquisition - components
	u-blox NEO-M8N
	ArduPilot Mega 2.6
	GoPro HERO 4 Black
	Data acquisition - format

	Data mapping
	Mapping algorithm
	Additional filtering

	Data storing

	Implementation
	Telemetry acquisition
	Camera calibration
	Calibration procedure
	Calibration results

	Odometric calculations
	Feature detection
	Feature matching
	Essential matrix

	Data mapping
	Mapping algorithm
	Bounding polygon
	Limiting the distance of view
	Translation of the bounding polygon
	Additional filtering
	3-dimensional check

	Database structure
	Additional adjustments


	Experiments
	Visual experiment
	Visual experiment - results

	Field of view experiment
	Field of view experiment - results

	Sensor correctness experiment
	Sensor correctness experiment - results

	Visual experiment revisited
	Visual experiment revisited - results

	Scalability
	Search
	Insert


	Conclusion and future work
	References

